UV - SPEKTROSKOPISCHE UNTERSUCHUNGEN AN MONO - AMINO - SUBSTITUIERTEN ACRIDINEN.

W. Seiffert , V. Zanker , H. Mantsch und B. Schneider Phys.-Chem.-Institut der Technischen Hochschule München

(Received in Germany 2 October 1968; received in UK for publication 7 October 1968)

1. Problemstellung:

Atome oder Atomgruppierungen mit einsamen Elektronenpaaren , etwa - F , - OH , - NH_2 sind bekanntlich in der Lage über einen positiven , mesomeren Effekt T -Elektronensysteme etwa von Aromaten , die sie substituieren , beträchtlich zu beeinflussen . Je stärker ihr Donatorcharakter ist , desto stärker wird eine La dungsalternanz im Grundzustand des π - Systems induziert ; diese Fähigkeit , Elektronen an das substituierte System zu liefern , nimmt mit steigender Ioni sierungsenergie des Donors ab , und umgekehrt mit dessen Konjúgationsfähigkeit, etwa unter anderem beeinflußt durch die Möglichkeit planarer Anordnung , d. h. paralleler $2p_{_{m{Z}}}$ - 0rbitalachsen , zu .Ganz entsprechend sollten sich die UV -Spektren der 🛪 -Systeme systematisch ändern . Am Beispiel des Acridins und seiner monosubstituierten Derivate wurde dies schon früher untersucht (1) . In einer vorangegangenen Arbeit ist bereits über die UV-Banden der vier Mono-Hydroxyacridine , des ungestörten Heteroaromaten und des Anthracens berichtet worden (2) . Experimentell mit Hilfe der Absorptions- und Fluoreszenzpolarisationsspektroskopie, semiempirisch mit Hilfe von PPP - Rechnungen wurden die Übergänge in den ver schiedenen Verbindungsklassen einander korreliert . Drei davon lassen sich bei Mono - Hydroxyacridinen nach dem Perimetermodell von Platt noch als $^{1}L_{a}$ - , $^{1}L_{b}$ und B_h - ähnlich klassifizieren , die ubrigen können von teilweise beim Kohlenwasserstoff verbotenen Übergängen(B_{3g} , A_{g}) hergeleitet werden (y-Richtung des Koordinatensystems parallel zur langen , z-Richtung parallel zur kurzen Molekülachse) . Die vorliegende Arbeit soll die bei mono-aminosubstituierten Acridinen auftretenden systematischen Änderungen in den UV-Spektren , d.h. die Konjugationsfähigkeit der NH₂ - Gruppe im Grundzustand und den ersten Anregungszuständen untersuchen und eine Korrelation der UV - Banden mit denen der Mono-Hydroxyverbindungen , des Acridins als heterocyclischen Grundkörper und des Anthracens mit Hilfe von PPP - Rechnungen durchführen.

2. MO - Rechnungen :

Für die in N - Näherung vorgenommenen Rechnungen wurden im wesentlichen ein Parametersatz nach Nishimoto (3) verwendet , der noch weiterer Verbesserung bedarf . Er ist in Tabelle I angegeben . Die Integrale sind wie in vorangegangenen Arbeiten symbolisiert (2 , 4) .

	$^{ ext{H}}_{ ext{ii}}$ eV	ŏ _{ii} eV	Bindung	Х	Y
c ⁺	11.16	11.13	C - C	-0.51	-1.84
N ⁺	14.12	12.34	C - N	-0.53	-2.02
N++	25.70	15.23		nach Nishin	noto (5)

Tab. I

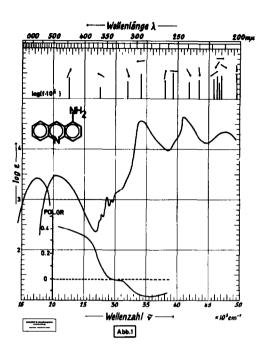
Die Rechnung verwendet 30 niederste , einfach angeregte Konfigurationen . ß - Iteration nach Nishimoto wird durchgeführt (5) . Die erzielten spektralen Lagen der einzelnen Banden sind denen der entsprechenden Hydroxyverbindungen sehr ähnlich . Bei den 1 - bzw. 4 - substituierten Derivaten wird der in der langen Molekülachse polarisierte , intensive $^{1}\mathrm{B}_{b}$ - ähnliche Übergang nach S_{6} und der vorgelagerte , nahezu senkrecht dazu polarisierte nach S_{5} etwas zu langwellig berechnet . Für die vier aminosubstituierten Verbindungen sind in den Abb. 1 - 4 die erhaltenen Energieeigenwerte und die Intensitäten ihrer Über - gänge (als log f . 10 4) als Strichspektren über den experimentellen UV - und Fluoreszenzpolarisationsspektren (1) aufgezeichnet . Die Polarisationen sind durch Pfeile symbolisiert . In Tab. I sind die f - Werte nochmals zusammengestellt .

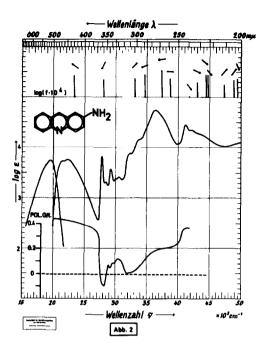
1-Aminoacridin		2-Amino	2-Aminoacridin		acridin	4-Amino	4-Aminoacridin		
h v eV	f	hv eV	f	hv eV	f	h v eV	f		
2.789	0.201	2.889	0.234	2.974	0.277	2.742	0.169		
3.411	0.006	3.471	0.068	3.491	0.079	3.382	0.002		
3.962	0.059	4.099	0.097	4.052	0.135	3.953	0.068		
4.232	0.835	4.292	0.359	4.357	0.410	4.179	0.881		
4.707	0.091	4.631	1.890	4.650	1.651	4.637	0.131		
4.867	1.223	4.803	0.082	4.895	0.097	4.835	0.979		
5.189	0.040	5.174	0.000	5.172	0.027	5.114	0.173		
5.391	0.094	5.332	0.023	5.309	0.066	5.263	0.109		
5.684	0.192	5.506	0.319	5.429	0.639	5.659	0.027		
5.753	0.114	5.543	0.307	5.624	0.046	5.699	0.251		
5.793	0.033	5.868	0.011	5.978	0.140	5.802	0.503		
5.841	0.371	6.060	0.050	6.064	0.018	5.928	0.116		
6.144	0.824	6.129	0.081	6.153	0.113	6.136	0.194		

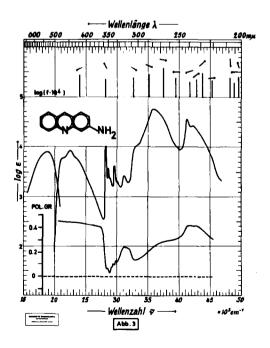
Tab.II

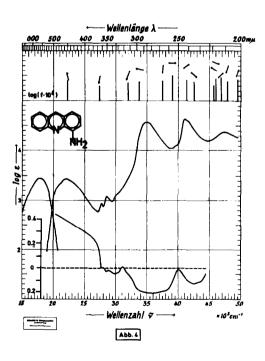
No.54 5657

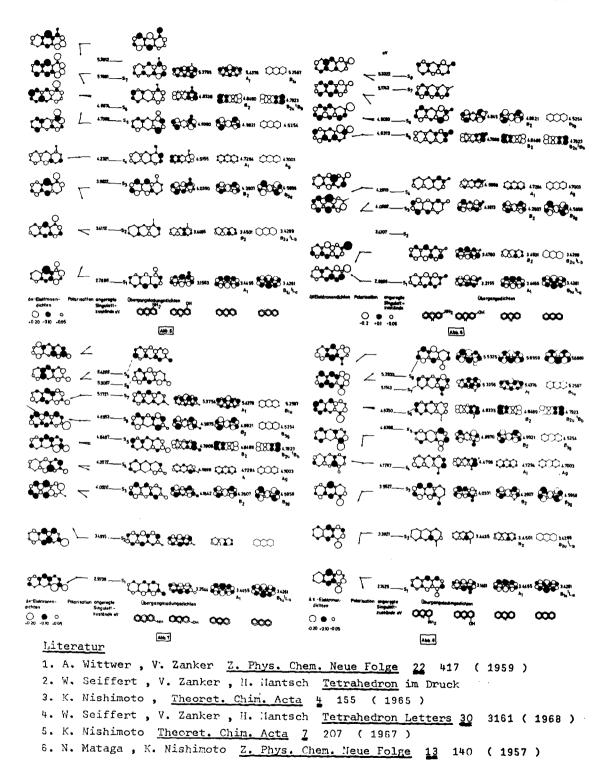
Die nach PPP erhaltenen Eigenfunktionen gestatten es , die UV - Banden bei Amino-Acridinen denen der Hydroxyacridine und damit auch des Acridins und Anthracens zu korrēlieren .


3. Bandencharakteristik:


In den Abb. 5 - 8 sind in den Spalten 3 die Termschemata der angeregten Singulettzustände in eV, in Spalte 2 die berechneten Polarisationen der Übergänge in diese Zustände und in Spalte 1 die damit verbundene Änderung in den N -Elektronendichten angegeben. Die Spalten 4 enthalten die aus den Eigenfunktionen berechneten Über gangsdichten . Jene Übergangsladungsverteilungen angeregter Zustände im Singulettsystem der Hydroxyacridine , des Acridins und des Anthracens (Spalten 5 , 6 , 7), die gleiche oder ähnliche Knotenverteilungen wie diejenigen der Aminoderivate be sitzen sind nebeneinander geschrieben. Damit sind ihre Energieterme einander korreliert . Die Bandenfolge ist die gleiche wie bei den Hydroxyverbindungen mit Aus nahme eines höheren , von einem verbotenen B_{3g} - Übergang des Anthracens sich herleitenden Terms bei den 1 - bzw. 4-substituierten Aminoacridinen. Dieser überholt langwellig die ¹B_h - ähnliche Bande beim Übergang von den Hydroxy - Verbindungen zu den Amino - Derivaten . Bei dieser Stellung des Substituenten ist die 1B. ähnliche Bande ziemlich lagegleich , unabhängig von der Art der substituierenden Gruppe ; besonders ist das der Fall bei den $^{1}L_{\rm h}$ - ähnlichen Übergängen nach S $_{2}$. In der Reihe Acridin , Hydroxyacridin , Aminoacridin verschieben sich besonders stark nach langen Wellen die $^{1}\mathrm{L_{_{_{\mathbf{3}}}}}$ - ähnlichen Banden und diejenigen Anregungen , die sich von den beim Anthracen verbotenen Übergängen nach $\mathbf{A}_{\mathbf{g}}$, in geringerem Maße von denen mach $B_{3\sigma}$ herleiten lassen (besonders bei 1 - und 4 - Substitution) . Die Polarisationsrichtungen der Aminoderivate sind denjenigen der Hydroxyverbindungen sehr ähnlich . Wie bei jenen sind sie besonders bei schwachen Banden von intensiven , energetisch benachbarten bestimmt, wie es bei den OH-Verbindungen bereits beschrieben wurde (2).


4. Elektronenverteilungen und Substituenteneinfluß:


In Tab. III werden die \overline{u} -Elektronendichten und Bindungsordnungen im Grund- und S₁-Zustand wiedergegeben . Die Atomnummerierung läuft durchgehend auch über die angulären C - Atome , beginnend mit der üblicherweise als 1 - Stellung bezeichneten Position . Die Atomnummer des N ist 15 . Bei UV - Anregung in den S₁ - Zustand kommt es bei allen vier Aminoacridinen zu einer Zunahme der Konjugation der sub - stituierten NH₂ - Gruppe mit dem heterocyclischen \overline{u} -System und einer Abnahme der Konjugation beider anellierter Benzolringe über den Heteroring ; deren Bindungs - ordnungen gleichen sich etwas aus . Die Elektronendichte am Aminostickstoff nimmt ab , die am Ringstickstoff , ausgenommen bei 3 - Aminoacridin , zu .


Wir danken der DFG , dem Deutschen Rechenzentrum Darmstadt und dem Institut für Plasmaphysik der Max Planck Gesellschaft für ihre Hilfe bei der Durchführung dieser Arbeit .

π -Dichten q _i			1 -Bindungs- ordnung p _{ij}		π−Dic	n- Dichten q _i			n -Bindungs- ordnung p _{ij}		
i	So	s ₁	i-j	Şo	S ₁	i	s _o	S ₁	i-j	So	S ₁
1-Aminoacridin : 2-Aminoacridin :								_			
1	0.989	0.946	1-2	0.684	0.569	1	1.122	0.989	1-2	0.698	0.579
2	1.126	0.963	2-3	0.566	0.623	2	1,001	0.968	2-3	0.468	0.495
3	0.969	0.992	3-4	0.760	0.698	3	1.035	1.193	3-4	0.803	0.662
4	1.066	0.925	4-5	0.499	0.537	4	0.991	1.061	4-5	0.468	0.571
5	0.895	0.973	5-6	0.601	0.484	5	0.923	1.061	5-6	0.612	0.510
6	1.273	1.318	6-7	0.597	0.504	6	1.261	1.325	6-7	0.598	0.537
7	0.905	0.943	7-8	0.486	0.530	7	0.918	0.943	7-8	0.485	0.513
8	1.001	0.963	8-9	0.783	0.703	8	1,001	0.956	8-9	0.784	0.713
9	0.987	0.997	9-10	0.533	0.595	9	0.992	0.965	9-10	0.531	0.597
10	1.010	0.993	10-11	0.787	0.687	10	1.008	1.004	10-11	0.784	0.676
11	1.000	1.003	11-12	0.492	0.571	11	0.999	0.936	11-12	0.486	0.569
12	1.024	1.024	12-13	0.602	0.455	12	1.011	1.069	12-13	0.616	0.467
13	0.949	1.208	13-14	0.652	0.533	13	0.957	0.986	13-14	0.617	0.595
14	1.043	1.107	1-14	0.428	0.482	14	0.998	0.986	1-14	0.502	0.533
15	1.761	1.641	5-14	0.494	0.543	15	1.781	1.556	5-14	0.501	0.495
			7-12	0.516	0.546				7-12	0.512	0.561
			1-15	0.478	0.552				2-15	0.461	0.551
3-	Aminoac	ridin :				4-Aminoacridin :					
1	0.984	1.048	1-2	0.806	0.664	1	1.064	0.952	1-2	0.767	0.705
2	1.057	1.163	2-3	0.462	0.512	2	0.989	0.974	2-3	0.559	0.627
3	0.983	0.969	3-4	0.690	0.576	3	1.113	0.989	3-4	0.685	0.574
4	1.128	0.911	4-5	0.520	0.503	4	0.997	0.944	4-5	0.427	0.453
5	0.893	0,903	5-6	0.595	0.587	5	0.934	1.031	5-6	0.616	0.507
6	1.287	1.223	6-7	0.594	0.491	6	1.274	1.394	6-7	0.592	0.460
7	0.904	1.002	7-8	0.488	0.547	7.	0.919	0.954	7-3	0.487	0.557
8	1.006	0.933	8-9	0.782	0.670	8	1.006	1.001	8-9	0.783	0.699
9	0.938	1.029	9-10	0.535	0.609	9	Q.989	1.001	9-10	0.532	0.594
10	1.014	0.980	10-11	0.780	0.691	10	1,006	1.001	10-11	0.784	0.702
11	0.996	0.982	11-12	0.493	0.528	11	0.994	0.992	11-12	0.437	0.546
12	1.025	1.044	12-13	0.602	0.542	12	1.012	1.028	12-13	0.614	0.493
13	0.933	1.126	13-14	0.643	0.516	13	0.942	1.142	13-14	0.621	0.484
14	1.032	1.149	1-14	0.467	0.572	14	1.002	1.035	1-14	0.484	0.563
15.	1.769	1.537	5-14	0.488	0.524	15	1.757	1.561	5-14	0.510	0.546
			7-12	0.516	0.554				7-12	0.514	0.553
			3-15	0.476	0.552				4-15	0.481	0.531

Tab. III